The Laplace-Beltrami operator on surfaces with axial symmetry
نویسنده
چکیده
The physical situation which has initiated this research is that of a dielectric particle with electric charges on its surface, placed in electric field. Here, the diffusion equation of the charges is coupled with the Maxwell equations. There is an analytical solution of this system of equation [1] which involves some functional calculus with operators, in particular with Laplace-Beltrami operator defined on the surface of that particle. We can imagine many other physical situations described by a complicated system of equations where the Laplace-Beltrami operator is implicated (e.g. that of the acoustic wave scattering on particles with membrane, etc.). As before, one can find a compact solution by using functional calculus. However, these solutions are not complete because, at this level, all is formal. We must have an effective procedure to calculate the expressions which involve operators. One can try
منابع مشابه
On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces
Discrete Laplace–Beltrami operators on polyhedral surfaces play an important role for various applications in geometry processing and related areas like physical simulation or computer graphics. While discretizations of the weak Laplace–Beltrami operator are well-studied, less is known about the strong form. We present a principle for constructing strongly consistent discrete Laplace–Beltrami o...
متن کاملDiscrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations
In this paper we first modify a widely used discrete Laplace Beltrami operator proposed by Meyer et al over triangular surfaces, and then establish some convergence results for the modified discrete Laplace Beltrami operator over the triangulated spheres. A sequence of spherical triangulations which is optimal in certain sense and leads to smaller truncation error of the discrete Laplace Beltra...
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملA Discrete Laplace-Beltrami Operator for Simplicial Surfaces
We define a discrete Laplace-Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new ...
متن کاملSpherical Parameterization for Genus Zero Surfaces Using Laplace-Beltrami Eigenfunctions
In this work, we propose a fast and simple approach to obtain a spherical parameterization of a certain class of closed surfaces without holes. Our approach relies on empirical findings that can be mathematically investigated, to a certain extent, by using Laplace-Beltrami Operator and associated geometrical tools. The mapping proposed here is defined by considering only the three first non-tri...
متن کامل